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Abstract
A Dirac theory over complexified spacetime algebra leads unavoidably to a
U(1) ⊗ U(1) ⊗ SU(3) global gauge freedom. We argue the SU(3) freedom
corresponds to colour. The U(1) ⊗ U(1) gauge freedom mixes to give two
photon fields responsible for the charge assignments of the standard model. In
addition to the usual up/down spin and particle/anti-particle decomposition of
the Dirac field, this 16-dimensional field decomposes into a colourless leptonic
component and a three-coloured quarkonic component.

PACS numbers: 03.50.Dc, 03.30.+p

1. Introduction

The notion of SU(3) colour was originally introduced as a book keeping device by Gell-Mann
to restore the Fermi–Dirac statistics of quarks. Since then it has gained respectability as a
gauge theory called quantum chromodynamics (QCD). However, the SU(3) gauge appears to
have no fundamental physical explanation, or does it? We demonstrate this in a complexified
spacetime algebra formulation of the Dirac theory where the SU(3) gauge is present. An
analysis of the gauge in this context reveals that the Dirac field is composed of a colourless
leptonic component and a three-coloured quark component. Further, the maximal gauge
freedom is given by the group U(1)⊗ U(1)⊗ SU(3). A U(1) phase freedom together with
another U(1) non-phase freedom. The associated U(1) gauge fields mix to give the correct
charge assignments for the particles within each generation of the standard model. Moreover,
the approximate flavour symmetries play no role whatsoever and are not needed, although
they are useful as an analytical device.

Dirac theory originates from the early work of Dirac on relativistic electron theory. His
theory, which is now the established one [1, 2], is based on a 4 × 4 matrix representation of
the Clifford algebra C ⊗ C�(1, 3). The Dirac gamma matrices provide a representation of a
Hilbert space for particle/anti-particle and spin up/down fibred over Minkowski spacetime.
The spacetime algebra approach, a programme revitalized by Hestenes [3, 4] in the sixties,
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avoids an abstract space of states and endeavours to interpret the gamma matrices as vectors
in an associative algebra generated by a 1 + 3 orthonormal frame in Minkowski spacetime. In
addition, Hestenes argues for the elimination of complex numbers and has developed a real
Dirac theory [5] to that end. This paper adopts a similar spacetime algebra programme but
not a real Dirac theory. A good modern introduction to Clifford algebra in this context is
Lounesto [6].

The Dirac algebra C⊗C�(1, 3) is already known to permit SU(3) gauge symmetries. The
tetrahedral structure of idempotents resulting in SU(3) symmetries was studied by Chisholm
[7] and again in the context of quantum logic by Schmeikal [8, 9]. What is shown in this
paper is that the residual freedom, once the Lorentz group is taken into account, provides
an unavoidable U(1) ⊗ U(1) ⊗ SU(3) gauge freedom. This gauge freedom is a result of
spacetime covariance of the Dirac equation over complexified spacetime algebra. Chisholm
and Farwell [9–12] have developed a unified spin model of gravitation and the standard
model in the real Clifford algebra C�(3, 8). This formalism contains the standard model
over C�(1, 6). Recently Trayling and Baylis [13] have formulated the standard model over
C�(7, 0).

We consider the Dirac equation in the complexified spacetime algebra C ⊗ C�(η), with
vector generators eµ satisfying e2

0 = −η and e2
k = η, where η = ±1 corresponds to the

Lorentz/anti-Lorentz metric given by

i∇ψ = mψe0. (1)

This formulation, normally on the even subalgebra C ⊗ C�+(η), is the covariant version of
Joyce [14] where the notation of this paper is established. This is equivalent to the classical
Dirac equation on the left ideal C ⊗ C�+(η) 1

2 (1 + ie12). See Joyce and Martin [15] for
the details of this relationship. The complexified spacetime field ψ is composed of real
multivectors multiplied by a phase. The real multivectors have a geometric interpretation (in
the sense of Hestenes). The phase may be interpreted as the quantum component of ψ . An
alternative perspective, and perhaps that which is in vogue, is to follow Kaluza–Klein theory.
One introduces a compact fourth spatial dimension e4. Then C ⊗ C�(η) ∼= C�(1, 4) with the
unit imaginary i identified as e01234. We prefer the former view although the distinction is
irrelevant in what follows.

The action of the Lorentz group is generated by the real Lie subalgebra 〈e0k, ekl〉R. The Lie
bracket is given by the anti-symmetric product [a,b] = 1

2 (ab − ba). A 4-vector x transforms
under a Lorentz transformation according to

x �→ UxU−1 (2)

where

U = em φ

2 en θ
2 (3)

with m = mke0k , m2 = 1, n = nklekl , nlk = −nkl and n2 = −1. This defines a rotation by
θ in the plane given by n followed by a boast along mkek with rapidity φ. The ∇ = eµ∂µ

operator transforms according to ∇ �→ U−1∇U. The spinor ψ preserves the Dirac equation
by transforming according to

ψ �→ U−1ψ. (4)

An infinitesimal analysis in Joyce [14] shows that this left action implies that ψ is a spin half
field. This leads to observables for up/down spin. These together with particle/anti-particle
observables account for two of the four degrees of freedom. There are a total of four degrees
(and not five) because the unit imaginary commutes with all multivectors. Moreover, the
action under left or right multiplication is faithfully generated by only 16 generators. Six of
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these are required to generate the Lorentz group. This leaves ten which we chose in such a
way as to generate the gauge groupU(1)⊗U(1)⊗ SU(3). In principle, a larger gauge group
could be chosen, however, this would be subject to constraints which when taken to account
would reduce to U(1)⊗ U(1)⊗ SU(3).

2. The master gauge group

We seek the largest (real) compact gauge group preserving solutions to the full Dirac equation

i∇ψ = mψe0 (5)

where ψ ∈ C ⊗ C�(η) that preserves the observable content of the solutions. That is to
say, the generators of the gauge group commute with the scalar energy operator i∂0, the kth
component scalar momentum operators −i∂k and the bivector spin operators i

2 ekl . First note
that under the transformation ψ �→ e0123ψ the observable content of ψ is preserved but now
satisfies the equivalent equation

i∇ψ = −mψe0 (6)

having a negative mass. Thus under a right action a basis multivector u either commutes with
e0 preserving the sign of the mass or anti-commutes reversing the sign of the mass term. In
the latter case left multiplication by e0123 is required to prevent sign reversing. This leads to
the following set of 16 (right acting) compact generators1:

ψT∅ = iψ (7)

ψT0 = √
ηψe0 (8)

ψTk = √
ηe0123ψek (9)

ψT0k = ηe0123ψe0k (10)

ψTkl = −ηψekl (11)

ψT0kl = √−ηψe0kl (12)

ψT123 = √−ηe0123ψe123 (13)

ψT0123 = ie0123ψe0123 (14)

where k, l ∈ {1, 2, 3} such that k �= l. Let I be the set of words formed from the letters
{0, 1, 2, 3} composed of distinct letters. We denote the generators above by Tα where α ∈ I
and the properties T 2

α = −1 and Tπα = (sgnπ)Tα where π ∈ S|α| hold. The generators satisfy
the relations

TµTν = Tµν (15)

TµTνTρ = iTµνρ (16)

T0T1T2T3 = iT0123 (17)

where µ, ν, ρ ∈ {0, 1, 2, 3} are distinct. The commutation relations are now easily calculated
to be

[T0, Tk] = T0k [T0k, T0lm] = Tklm (18)

[T0k, T0l] = Tkl [T0kl , Tklm] = −T0m (19)

[T0k, Tkl] = −T0l [T0kl, T0lm] = Tkm (20)
1 The full spacetime version of the classical Dirac equation i∇ψ = mψ has generators where the e0123 appearing on
the left are replaced by the complex number i.
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Figure 1. Important subgroups of the master gauge group.

[Tkl, Tlm] = −Tkm [Tklm, T0k] = T0lm (21)
[Tk, Tl] = Tkl [T0123, T0] = T123 (22)
[T0kl, Tm] = T0klm [Tk, T0klm] = T0lm (23)
[T0k, Tk] = −T0 [Tkl, Tl] = −Tk (24)
[T0, T123] = T0123 [T0klm, T0kl] = −Tm (25)
[T123, T0123] = T0 [T0, T0k] = −Tk (26)

where k, l,m are distinct. All other Lie brackets are zero.
The first generator T∅ commutes with the other generators and generates U(1). The

remaining 15 generate SO(6). Moreover, the adjoint matrix representation is given by
interpreting 



0 T0 T1 T2 T3 T0123

−T0 0 −T01 −T02 −T03 T123

−T1 −T01 0 −T12 T31 −T023

−T2 T02 T12 0 −T23 −T031

−T3 T03 −T31 T23 0 −T012

−T0123 −T123 T023 T031 T012 0




(27)

as follows. The matrix generator corresponding to Tα is given by replacing all its appearances
by 1 with all other entries 0. For example, (T01)ab has all components zero except for
(T01)32 = 1 and (T01)23 = −1. These matrices satisfy T T t = I and T + T t = 0.

The master gauge group has important subgroups as given in figure 1. On C⊗C�+(η) the
Dirac equation is invariant under U(1) ⊗ U(1) ⊗ SO(4). However, the spin splits the space
C⊗C�+(η) into two orthogonal four-dimensional subspaces. The remaining freedom may be
accounted for by SU(2)⊗ SU(2) ⊂ SO(4). We form the infinitesimal generators

J±
k = 1

2

(
T0k ± 1

2εk
lmTlm

)
(28)

where each triplet, (J +
k )k and (J−

k )k, generates a copy of SU(2). We can project out isospin
states about a common axis a = akek using the commuting orthogonal pairs of projections,

�+
± = 1

2

(
1 ± iakJ +

k

)
(29)

�−
± = 1

2

(
1 ± iakJ−

k

)
(30)
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satisfying �±
+ + �±

− = 1. Thus we can decompose ψ ∈ C ⊗ C�+(η) according to
ψ = ψ+++ + ψ++− + · · · + ψ−−−, where ψ+++ = S+ψ�

+
+�

−
+ , ψ++− = S+ψ�

+
+�

−
−, . . . ,

ψ−−− = S−ψ�+
−�

−
− with S± = 1

2

(
1 ± i 1

2εk
lmbkelm

)
being the projection about a spin axis

b = bkek such that a ∧ b �= 0. In particular, on C ⊗ C�+(η) the electroweak gauge group
U(1)⊗ SU(2) is admitted. This may be used to formulate the Weinberg–Salam electroweak
theory [17, 18].

3. Extracting U (1) ⊗ SU (3) ⊂ SO(6)

In this section we determine generators for U(1) ⊗ SU(3), commuting with the U(1) phase
generator. This is mathematical and follows Georgi [19]. We extract SU(3) as a subgroup of
SO(6) by embedding it in the real Clifford algebra C�(6, 0). Let f0, . . . , f5 generate C�(6, 0)
through the conditions f2

µ = 1, f†µ = fµ and fµfν = −fνfµ whenever µ �= ν. The (real)
subspace spanned by fµν is a Lie algebra isomorphic to SO(6) under the identification

f01 �→ T0 (31)

f02 �→ T1 (32)

f03 �→ T2 (33)

f04 �→ T3 (34)

f05 �→ T0123. (35)

Complexifying we form the operators

A1 = 1
2 (f0 + if1) (36)

A2 = 1
2 (f2 + if3) (37)

A3 = 1
2 (f4 + if5). (38)

These operators satisfy Ai · Aj = 0, A†
i · A†

j = 0 and Ai · A†
j = δij . We construct generators

for SU(3) from the Gell-Mann matrices λa according to

Ta =
∑
ij

A†
i (λ

a)ijAj . (39)

Since Trλa = 0, then this formula reduces to

Ta =
∑
ij

(λa)ij [A
†
i ,Aj ]. (40)

Reading off the coefficients of the Gell-Mann matrices gives the generators for SU(3) as

T1 = 1
2 (f12 − f03) (41)

T2 = 1
2 (f31 − f02) (42)

T3 = 1
2 (f23 − f01) (43)

T4 = 1
2 (f14 − f05) (44)

T5 = 1
2 (f04 + f15) (45)

T6 = 1
2 (f34 − f25) (46)

T7 = 1
2 (f24 + f35) (47)

T8 = 1
2
√

3
(2f45 − f01 − f23). (48)
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A generator for U(1) commuting with generators for SU(3) is given by

S = i
∑
i

A†
iAi − 3i

2
= i

∑
i

[A†
i ,Ai] (49)

= − 1
2 (f01 + f23 + f45). (50)

This shows that U(1)⊗ SU(3) ⊂ SO(6).

4. SU (3) colour in spacetime algebra

Transcribing the SU(3) generators in terms of Tα, using (31) to (35), gives

T 1 = 1
2 (−T01 − T2) = − 1

2T2(1 − iT012) (51)

T 2 = 1
2 (T02 − T1) = − 1

2T1(1 − iT012) (52)

T 3 = 1
2 (−T12 − T0) = − 1

2T12(1 − iT012) (53)

T 4 = 1
2 (−T03 − T0123) = − 1

2T03(1 + iT12) (54)

T 5 = 1
2 (T3 + T123) = 1

2T3(1 + iT12) (55)

T 6 = 1
2 (−T23 + T023) = − 1

2T23(1 − iT0) (56)

T 7 = 1
2 (T31 − T031) = 1

2T31(1 − iT0) (57)

T 8 = 1
2
√

3
(−2T012 − T0 + T12)

= 1√
3

(
1
2T12(1 − iT0)− 1

2T0(1 + iT12)
)
. (58)

We note that T 1T 2 = T 3 motivating us to define the dependent generators T 9 = T 4T 5 and
T 10 = T 6T 7. Explicitly these are given by

T 9 = 1
2T0(1 + iT12) (59)

T 10 = − 1
2T12(1 − iT0). (60)

Thus T 8 = − 1√
3
(T 10 + T 9). Moreover, the generators are of the form (up to a sign)

T a = 1
2Tα(1 ± iTβ) where [Tα, Tβ] = 0 and a = 1, 2, . . . , 10. Since Tα2 = −1, then

(T a)2 = − 1
2 (1 ± iTβ) which is a projection operator. We define from the squares of T 3, T 9

and T 10 the inter-dependent right acting orthogonal projection pairs:

S± = 1
2 (1 ∓ iT012) (61)

T± = 1
2 (1 ± iT12) (62)

R± = 1
2 (1 ∓ iT0). (63)

These projections satisfy

R+T+ = S+T+ = R+S+ (64)

R−T− = S+T− = R−S+ (65)

R−T+ = S−T+ = R−S− (66)

R+T− = S−T− = R+S−. (67)
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Table 1. Eigenvalues of T 3, T 9 and T 10 operators.

iT 3 iT 9 iT 10
√

3iT 8

S+T+ 1 1 1 −2
S+T− −1 0 0 0
S−T+ 0 −1 0 1
S−T− 0 0 −1 1

Table 2. Eigenvalues of isospin (T ) and hypercharge (Y ).

T Y

S+T+ 0 − 2
3

S+T− 0 0

S−T+
1
2

1
3

S−T− − 1
2

1
3

It follows that R± = S+T± + S−T∓ and consequently that

S+T+R+ = S+T+ S+T+R− = 0 (68)

S+T−R+ = 0 S+T−R− = S+T− (69)

S−T+R+ = 0 S−T+R− = S−T+ (70)

S−T−R+ = S−T− S−T−R− = 0. (71)
We may decompose any spinor ψ ∈ C ⊗ C�(η) according to the four-dimensional

subalgebras C⊗C�(η)S±T±. Write ψ = ψ0 − i
√
ηψ1e0, whereψ0, ψ1 ∈ C⊗C�+(η). Since

e0R± = ±iη
√
ηR± then ψR± = (ψ0 ± ψ1)R±. Thus ψ = ψ+R+ + ψ−R−, or equivalently

ψ = ψ+(S+T+ + S−T−) + ψ−(S+T− + S−T+) (72)

where ψ± = ψ0 ± ψ1 ∈ C ⊗ C�+(η). Each component lies in a four-dimensional subalgebra
C ⊗ C�(η)S±T±. Since T12T± = ∓iT± and T0R± = ±iR± we may deduce that the
eigenvalues are given by table 1. We obtain the usual SU(3) eigenvalues by defining the
isospin operator to be

T = 1
2 i(−T 9 + T 10) (73)

and the hypercharge operator to be

Y = 1√
3
iT 8. (74)

Now the eigenvalues labelling the four projection operators S±T± are given in table 2. Raising
and lowering operators are given by

U± = − 1
2 (T

1 ∓ iT 2) (75)

V ± = 1
2 (T

5 ± iT 4) (76)

W± = 1
2 (T

6 ∓ iT 7). (77)

These satisfy

S−T∓U± = T2S−T± (78)

S±T+V
± = T3S∓T+ (79)

S±T±W± = T23S∓T∓ (80)
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Figure 2. Direct sum decomposition of C ⊗C�(η) under SU(3) into four-dimensional left ideals.

with all other combinations annihilated. Thus we see that the space C ⊗ C�(η) decomposes
into four four-dimensional subalgebras given by the direct sum [1] ⊕ [3]. This is depicted in
figure 2. The spinor field ψ is a spin half field and so this SU(3) gauge freedom cannot
be associated with flavour. We propose that it is coloured and identify the colourless [1]
subalgebra with a lepton field and the [3] subalgebra with a quark field. Thus every ψ
field is composed of a colourless leptonic field and a coloured quark field. This mirrors the
experimental fact that there are equal numbers of quark and lepton flavours.

5. The colour and electromagnetic interactions

The gauge freedom uncovered, in addition to a U(1) freedom for phase, provides a
U(1) ⊗ SU(3) global gauge right action on a Dirac field. This field decomposes under
the SU(3) right action into

ψ = ψl + ψq (81)

where ψl = ψS+T− is the leptonic component and ψq = ψ(1 − S+T−) the quarkonic
component. The quarkonic component splits into the three colours,

ψq = ψr + ψg + ψb (82)

where the red, green and blue quark colour components are

ψr = ψS−T+ (83)

ψg = ψS−T− (84)

ψb = ψS+T+. (85)

The conjugate of the quarkonic field provides us with an anti-quarkonic field with colour
components anti-red, anti-green and anti-blue.

The U(1) generator S = − 1
2 (T0 − T12 − T012) from (50) defines a charge operator

Q = −i 2
3 S which may be written in the form

Q = −i 1
3 (2T12S− + T012). (86)

Now it is straightforward to verify, by applying Q to S±T± and noting that T12T± = ∓iT± and
T012S± = ±iS±, that the components of ψ have the charges given by table 3. Moreover, the
charge decomposes into the sum of a quarkonic and a leptonic charge operator

Q = 1
3 (1 − S−T+)− S−T+. (87)

Minimal local gauging requires the introduction of gauge fields. Two U(1) gauge fields
for the generators i and λ = 2

3 S, and gluon fields for SU(3). The phase U(1) gauge field
is denoted by A = Aµeµ and the non-phase U(1) gauge field by B = Bµeµ. The eight
gluon generators transfer colour between quarks and are defined in table 4. The gluon fields
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Table 3. Charge assignments to the components of the Dirac field.

Component Q

ψl −1

ψr
1
3

ψg
1
3

ψb
1
3

Table 4. Gluon generators and the colour transferred.

Gluon Generator Colour change

λ1 U+ gr̄

λ2 U− rḡ

λ3 V + br̄

λ4 V− rb̄

λ5 W+ bḡ

λ6 W− gb̄

λ7 iT rr̄−gḡ
2

λ8 i
√

3Y 2bb̄−rr̄−gḡ
3

Table 5. Quantum numbers of the Dirac component fields.

Colour T Y Q

Black 0 0 −1

r 1
2

1
3

1
3

g − 1
2

1
3

1
3

b 0 − 2
3

1
3

are given by Ga = G
µ
a eµ, where a = 1, . . . , 8. The non-phase U(1) gauge field has (in a

sense) a gluonic component 1
3 (rr̄ + gḡ + bb̄). The quantum number assignment of the colour

components (including the leptonic component) is given in table 5. The lepton is viewed as
having, by convention, no colour (or is black). Note that every column sums to zero.

The covariant derivative is given by

Dµψ = ∂µψ − g′

2
Aµψ +

g

2
Bµψiλ +

G

2
Gµ
aψiλa (88)

where g, g′ are the coupling coefficients for the U(1) gauge fields, and G is the coupling
coefficient for the gluon fields. We mix the U(1) gauge fields by defining new fields(

Xµ

Yµ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Aµ

Bµ

)
(89)

where the mixing angle is given by

cos θ = g′√
g2 + g′2 (90)

and the new coupling coefficient is given by

q = gg′√
g2 + g′2 (91)

= 1
2 sin 2θ. (92)
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Table 6. Charge assignments of the Dirac component fields.

Flavour Charge projection Charge Particles

l Q+ −1 e, µ, τ

l Q− 0 νe, νµ, ντ

q Q+ − 1
3 u, s, t

q Q− 2
3 d, c, b

The X = Xµeµ is associated with U(1) gauge group generated by i 1
2 (1 + iλ). Similarly,

Y = Yµeµ is associated with the generator i 1
2 (1 − iλ). The covariant derivative is now

given by

Dµψ = ∂µψ − q

2
Xµψ

1

2
(1 + iλ)− q

2
Bµψ

1

2
(1 − iλ) +

G

2
Gµ
aψiλa. (93)

The charge (projection) operators Q± = 1
2 (1 ± iλ) do not contribute another degree of

freedom. There are only two available and these are already taken by the colour projections.
Nevertheless the charge assignments match those required by a generation of the standard
model and are given in table 6.

We may break U(1) symmetry by including a Lagrange multiple of either of the U(1)
gauge fields into the Lagrangian. This annihilates this gauge field, thus breaking the gauge.
Breaking U(1) symmetry corresponding to Q− (respectively Q+) gives an electro-colour
Lagrangian corresponding to a lepton flavour from row 1 (respectively 2) and a quark flavour
from row 3 (respectively 4) of table 6. We require another degree of freedom in C ⊗ C�(η)

in order to have isospin doublets. This would presumably require an incorporation of SU(2)
isospin.

6. Conclusion

We analysed the Dirac equation of Joyce [14] over complexified spacetime algebra C⊗C�(η).
We established a maximal gauge group acting faithfully and independently of the Lorentz
group. This was found to be U(1)⊗U(1)⊗ SU(3). We explicitly determined generators for
the subgroup which we used to decompose the Dirac field ψ into a colourless leptonic part
(transforming as [1]) and a coloured quarkonic part (transforming as [3]). This together with
up/down spin and particle/anti-particle eigenstates, accounts for the four degrees of freedom.
Moreover, this indicates a possible origin for the SU(3) colour gauge freedom. It also explains
the observation that there are equal numbers of lepton and quark flavours. The gauge fields
corresponding to U(1) ⊗ U(1) mix to give photon fields, one with (lepton, quark) quantum
numbers

(
1,− 1

3

)
and the other with

(
0, 2

3

)
. Unfortunately, the complexified spacetime algebra

requires another degree of freedom to project out a complete generation of the standard model.
This is the only obstacle to an electro-colour description of a single generation of the standard
model in C ⊗ C�(η).
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